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Three-wave interaction in two-component quadratic nonlinear lattices
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We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale
technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill
resonance conditions. We demonstrate that energy conversion and pulse propagation known from three-wave
interaction is reproduced in the lattice and that exact phase matching of parametric processes can be obtained
in non-phase-matched lattices by tilting the interacting plane waves with respect to each other.
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I. INTRODUCTION

The diverse variety of research results from recent ye
has demonstrated that multiple-wave parametric proce
contain a vast multitude of nonlinear phenomena. Recen
the study of parametric interaction has been extended to
clude discrete systems as well@3–10#. Here we will consider
a two-component lattice formed by a line of resonantly
teracting pairs of nonlinear oscillators. Most theoretical a
experimental studies of parametric wave interactions are
formed in the context of optics, but they are universal a
may appear in all branches of nature where nonlinea
comes into play. Examples are found, e.g., in plasma ph
ics, solid state physics, and in dynamics of electromagne
acoustic, and water waves@1,2#. We will nevertheless use th
language of optics and understand the oscillators as an a
of coupled waveguides, each of them allowing degene
interaction between a fundamental and a second harm
field. The evolution of the fields in thenth waveguide is
governed by the following set of ordinary differentia
difference equations@6,7#:

iẆn1~Wn111Wn21!1Wn* Vn50,
~1!

iV̇n1h~Vn111Vn21!2aVn1Wn
2/250,

with n51,...,n0 . Wn is the fundamental mode at frequen
V1 that propagates inside the waveguide with wave vec
Q1 and Vn is the second harmonic mode at frequencyV2
52V1 , which propagates with wave vectorQ2 . System~1!
is derived under the assumption that the modes are clos
phase matching, i.e.,Q2'2Q1 . The constanta measures the
residual phase mismatch between the modes. The pos
constanth5k2 /k1 is the ratio of the nearest neighbor co
pling strength of the second harmonick2 to the fundamenta
k1 . It is thus assumed thatk1Þ0, i.e., that the fundamenta
fields in adjacent waveguides are overlapping. The dot
notes differentiation with respect to independent variablez,
which measures the normalized distance along wavegui
and complex conjugation is indicated by an asterisk.
PRE 601063-651X/99/60~5!/6104~7!/$15.00
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Various properties of the system~1! have already been
established. In Ref.@5# all real, stationary solutions wer
found analytically forn052,4,6, and in Ref.@6# the complete
set of stationary solutions were found forn052. When the
number of sites is large, one can find several types of disc
solitary waves~also called intrinsic localized modes! with
complicated phase and amplitude profiles@7,8#. Discrete
solitary waves are intense and strongly localized excitatio
This is in contrast to the plane wave solutions to Eqs.~1!. In
Ref. @10# the destiny of smooth nonlinear plane waves a
the validity of modulation equations describing slow evo
tion of the solution parameters in the plane waves has b
investigated in detail.

In this paper we will focus on interaction between thr
smoothly modulated~quasi-monochromatic! plane waves.
Although the intensity of the plane waves varies smooth
the fast phase variation will make a simple, direct continu
approximation of Eqs.~1! break down. Instead we use th
multiple scale technique on the plane wave envelopes
find the well known three-wave interaction equations that
integrable and have soliton solutions@11#. We will explore
the three-wave interaction equations as a means of gen
ing interesting beam dynamics in the lattice. The pape
organized as follows. In Sec. II, modulation equations
derived. In Sec. III A, the degenerate case with only tw
participating waves is explored as a means by which to
tain phase-matched energy conversion to the second
monic, using both plane waves and localized beams. In S
III B, we investigate the nondegenerate case with three pl
waves of different frequency. We show that phase-matc
down-conversion takes place via decay instability and
plore the possibilities for beam steering in the lattice. Fina
Sec. IV contains a summary and conclusions.

II. ENVELOPE EQUATIONS

In the absence of coupling between the waveguides,
light fields in the fundamental and the second harmo
modes propagate steadily in thez direction inside each iso
lated waveguide with wave vectorsQ1 andQ2 , respectively.
However, the coupling to the neighboring waveguides res
6104 © 1999 The American Physical Society
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in an effective lattice structure and leads to new modulat
phenomena developing in the transversex direction associ-
ated with the waveguide numbersn @12#. This modulation
has a longitudinal partq ~along z) and a transverse partk
~along x), such that the total wave vector inside th
waveguides is a sum of three vectorsQ, q, andk. ~See Fig.
1.! As long as Eqs.~1! are obtained in the long-waveleng
limit, one has thatuqu,uku!Q, hence the oblique angles o
the injected beams are small. In the present paper, we
with resonance phenomena associated with (q,k). Since the
carrier waves (V,Q) of the modesWn andVn already fulfill
the primary resonance, the resonance associated with (q,k)
may be called secondary ortransversedue to the participa-
tion of a nonzerok.

In order to explain the phenomenon we are dealing w
we note that Eqs.~1! can be viewed as two linear lattices (V
andW) which are coupled in a nonlinear way. In the line
limit where the lattices are decoupled, they are character
by the dispersion relations

q52 cos~k! ~2!

for the W branch and

q52h cos~k!2a ~3!

for the V branch.
Consider now the evolution of an excitation that consi

of three modes, characterized by transverse wave num
k1,2,3 and longitudinal wave number variationsq1,2,3 related
by

q35q11q2 , k35k11k21k, ~4!

wherek52pn (n50,61,62,...) is avector of the recipro-
cal lattice. Equation~4! implies resonant interaction amon
the modes, which we refer to as transverse resonance.
suming that the modesk1,2 and k3 belong to theW and V
branches, respectively, one finds from Eqs.~2! and ~3! that
conditions~4! are satisfied provided that the following rel
tion between the transverse wave numbersk1,2 is fulfilled:

h cos~k11k2!2cos~k1!2cos~k2!2
a

2
50. ~5!

Let us make two assumptions:~i! the lattice is infinite
@14#, and ~ii ! field excitations are smooth enough compar
to the distance between neighbor sites, which is normali
to unity in our case. Then we can look for the solution of t
system~1! in the form

FIG. 1. Schematic view of an array of waveguides and wa
vector of light beam~s!.
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Wn5e@A1~T,X!ei (q1z2k1n)1A2~T,X!ei (q2z2k2n)#1O~e3!,
~6!

Vn5eA3~T,X!ei (q3z2k3n)1e2B1~T,X!e2i (q1z2k1n)

1e2B2~T,X!e2i (q2z2k2n)1O~e3!. ~7!

Here T5ez and X5en are slow coordinates and, cons
quently, amplitudesAj and Bj are slowly varying complex
functions. The terms characterized by the amplitudesAj de-
scribe modes interacting in a resonant manner while
terms characterized by the amplitudesBj describe nonreso
nant generation of second harmonics~see below!.

Taking into account Eqs.~2! and ~3!, one ensures tha
Eqs.~4!, ~6!, and~7! satisfy Eqs.~1! in the first order of the
small parametere. In the second order of parametere, the
dynamical equations for the amplitudesAj are found to be
the well known system describing resonant three-wave in
action

]A1

]T
1v1

]A1

]X
5 iA2* A3 ,

]A2

]T
1v2

]A2

]X
5 iA1* A3 , ~8!

]A3

]T
1v3

]A3

]X
5 iA1A2 .

Here, v1,2522 sin(k1,2) is related to the propagation ang
of theW modes andv3522h sin(k3) is related to the propa
gation angle of theV mode.

In the present work we are concerned with the evolut
of field excitations against a plane wave background. T
simplest solutions having energy localized in space read@13#

A15Aa2a3 sech~z!, A25A2a1a3 tanh~z!,
~9!

A35 iA2a1a2 sech~z!,

A15Aa2a3 sech~z!, A25Aa1a3 sech~z!,
~10!

A35 iAa1a2 tanh~z!,

where a j5v j2v ( j 51,2,3) and we have considered th
change of variablesz5X2vT, t5T; the constantv is re-
lated to the propagation angle of the coupled state. The
lutions ~9! and ~10! both require some relations among th
parameters. In the case of solution~9!, we need to satisfy
v2,3,v,v1 or v1,v,v2,3 and in the case of solution~10!
we need to satisfyv1,2,3,v or v1,2,3.v. The amplitudesBj
are also found from the second order approximation ine.
One obtains

B15
a2a3

b1
sech2~z!, B252

a1a3

b2
tanh2~z! ~11!

in the case of solution~9! and

Bj5
a32 ja3

bj
sech2~z!, ~12!

e
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6106 PRE 60V. V. KONOTOP et al.
for solution ~10!. Herebj54qj24h cos(2kj)12a ( j 51,2).
It follows from these expressions that solutions~6! and ~7!
are consistent unless one of the denominators in~11! and
~12! vanishes:

4 cos~k1,2!22h cos~2k1,2!1a50. ~13!

The fulfillment of Eq.~13! is a special case. It is nothin
more than the matching conditions ofdegeneratethree-wave
interaction, i.e., second harmonic generation in system~1!
@see Eqs.~2!, ~3!#:

q352q1,2, k352k1,21k. ~14!

In this caseA15A2 and the system~8! degenerates; the
equations governing the second-harmonic generation rea

]A1

]T
1v1

]A1

]X
5 iA1* A3 ,

~15!
]A3

]T
1v3

]A3

]X
5 iA1

2 ,

where we have considered the conditions of the seco
harmonic generation in the formq352q1 , k352k11k,
which is equivalent to havingb150.

We check the linear stability of solutions~9! and ~10!,
using their behavior in the asymptotic zone with respec
X. To this end, we linearize Eq.~8! about the unperturbed
solutions ~9! or ~10! by making the substitutionAj→Aj
1gj (z,t), where the functionsAj are given by Eq.~9! or
Eq. ~10! and gj (z,t)!Aj . The linearized equation can b
written down in the form

i
]g

]t
5Lg ~16!

where g5col(g1 ,g2 ,g3 ,g1* ,g2* ,g3* ), L52 ia]/]z1M , a
5diag(a1,a2,a3,a1,a2,a3), andM is a 636 matrix with the
elements M135M31* 52M46* 52M645A2* , M155M24

52M42* 52M51* 5A3 , M235M32* 52M56* 52M655A1* ,
while the remaining elements are zero. Then, instability
the solution means the existence of complex eigenvalue
L ~we denote themv!. Considering the asymptotics of th
eigenvalue problemLg5vg at z→6`, we get gj
→Gje

iKx, with Gj being a constant. It is then possible
ensure that for the solution~9!, v(K) is a real-valued func-
tion for all K. In other words, the continuous spectrum of t
operator L consists of intervals of the real axis (2`,
2v0#ø@v0 ,`), wherev0522a1a3 /ua12a3u ~remember
that for the unperturbed solution at handa1a3,0). This
result ensures the stability of the background.

On the other hand, in the same limit,uzu→`, the equation
for g2 ~and forg2* ) is singled out and reads

ia2

]g2

]z
5vg2 . ~17!

Thus the decay ofg2 at 6`, simultaneously, cannot be pro
vided unlessv50. This value of the spectral parameter co
responds to the only discrete eigenvalue of the operatoL
which is given bygj5]Aj /]z.
d-

o

f
of

-

In the case of solution~10!, we find thatv has an imagi-
nary part whenK2,4/(v12v3)2 and hence even the back
ground of the solution is unstable with respect to lon
wavelength excitations. This correlates with numeric
simulations that will be presented in the next section.
should be mentioned here that the stability analysis provi
above is in the context of the three-wave model and does
give the stability of the full discrete system of Eqs.~1!.

III. NUMERICAL RESULTS

We have made a careful study based on numerical si
lations of Eqs.~1!. The purpose of the simulations is not on
to check the validity of the approximate solutions from t
preceding section. We also seek to visualize the beam
namics in a comprehensive way and to investigate the eff
that arise when parameter values are detuned and de
from the optimal values. Recall that in Eqs.~1! and the so-
lutions ~9! and ~10!, h anda are material parameters whic
are determined by the design and quality of the waveguid
while the wave numberskj are free parameters and can
controlled by the proper choice of the input beam angles

A. Degenerate case

First we present the results for the degenerate cas
which we focus on the possibility of efficient energy conve
sion from the fundamental to the second harmonic. In
degenerate case, the resonance condition Eq.~13! is fulfilled
and only two plane waves interact. Figure 2 gives an
ample of complete energy conversion from the fundame
to the second harmonic in an array withn0516 waveguides.
Parameters areh51 and a523. At the input of the
waveguides there is no second harmonic seed. It is seen
even though each waveguide has a nonzero phase mism
it is possible to obtain complete energy conversion. T

FIG. 2. Second harmonic generation with plane wave inp
Parameters:a523, h51. The chain is periodic in order to simu
late an infinite array.
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would not be possible in a single isolated waveguide with
a second harmonic seed with a well defined phase. Howe
Fig. 2 results from simulations with periodic boundary co
ditions. In this way the array is equivalent to an array
infinite extension with accuracy 1/n0 @14#. A real array will
have open boundary conditions unless a rather unreal
circle geometry is assumed, or unless the array consist
only two waveguides, which makes periodic and op
boundary conditions equivalent.

The resonance condition Eq.~13! cannot be satisfied fo
an arbitrary set of parameter valuesh anda. Figure 3 shows
the region in parameter space where it is possible to cho
the wave numberk5k1 in such a way that Eq.~13! is satis-
fied and degenerate transverse phase matching is obta
The thick lines at the separating borders indicate the spe
values ofh anda wherev15v3 and the beams will propa
gate through the waveguides without walking away fro
each other in the transverse direction. The valuev32v1 is
termed thewalkoff. It becomes important when we consid
the interaction of beams instead of plane waves of infin
extension.

With a plane wave as input, we had to impose the unna
ral periodic boundary conditions. However, the bound
conditions are unimportant when the input condition
changed to the more realistic case with a confined be
Figure 4 shows such a case. Equation~13! is fulfilled and
v15v3 , so the fundamental beam is converted into a sec
harmonic beam that propagates in the same direction as
fundamental.

The values ofh and a are difficult to control or even
determine exactly when an actual waveguide array is con
ered. Also, the input beam angle will have some uncertai
Therefore, we consider the effect of tuning the parame
values away from the transverse phase-matching condi
Whether the value ofh, a, or k is detuned, the qualitative
effect remains the same. The detuning will manifest itself
an effective phase mismatch accompanied by a change in
walkoff. In order to monitor this, we have made a series
numerical simulations with the same configuration and in
the beam shape as in Fig. 4 but with different values ofk.
Figure 5~a! plots the resulting energy conversionr2v

52uVu2/uWu2 along the waveguides in four cases. In Fig. 5~b!
we detect the bandwidth of the energy conversion proces

FIG. 3. Shaded area indicates the allowed parameter region
degenerate transverse phase matching. Thick lines indicate v
with no walkoff, i.e.,v15v3 .
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is done in the following way. For each value ofk the energy
conversion has a maximum somewhere alongz. This value
is recorded for a range of values ofk and is plotted in Fig.
5~b! for three different values ofh.

B. Three-wave interaction

We now focus on genuine three-wave interaction
which Eq.~5! is fulfilled, while the condition for degenerat
resonance Eq.~13! is not fulfilled. As a representative ex
ample of efficient three-wave interaction, Fig. 6 shows
process of down-conversion from one plane wave inV to
two plane waves inW via decay instability in a lattice with
64 waveguides. The parameters for the sample areh50.5
and a522.9. At the entrance of the waveguides, a stro
oblique plane wave with wave numberk3520.25 is input in
the V mode and a seed of vanishingly small amplitude w
wave numberk150.15 is input in theW mode. As seen in
Fig. 6~a!, the k1 and thek2 components build up in theW
mode. The presence of two plane waves inW at z510 gen-
erates an interference pattern inuWu across the waveguides
The spectrum ofW yields that most of the energy ofW is in
thek1 andk2 modes and a smaller amount of energy is in t
sum and difference modes resulting from higher order m
ing of the plane waves.

or
es

FIG. 4. Pulse generation under the transverse phase-matc
condition. Parameters areh50.55, a522.9. Pulse parameters
e50.1, width55, velocity measured to20.8 (v1520.83). ~a!
Fundamental.~b! Second harmonic.
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FIG. 5. Angle sensitivity in the second harmonic generation experiment.~a! Energy conversionr2v versusz. Matching at6k50.43
[km ~solid line!, detuned at6k5km10.2 ~dotted!, 6k5km10.4 ~dashed!, and6k5km10.6 ~dash-dotted!. ~b! Peak conversion versusk
for various values ofh. Solid line, h50.55; dashed line,h50.7; dash-dotted line,h51.5. The big dot indicates the parameters of t
experiment in Fig. 4.
in
r o

-

m

ill
ni-
ete

ce

di
re
We have repeated the experiment from Fig. 6, replac
the plane waves with beams localized to a limited numbe
waveguides. Also, the seed inW is arbitrarily chosen to be
k2 instead ofk1 . For the particular values of the wave num
bers, the velocities arev1520.2989, v250.7788, andv3
50.2474. The beams will therefore tend to walk away fro

FIG. 6. Down-conversion with plane waves. Boundary con
tions are periodic. Parameters area522.9, h50.5. Input: exp
(2ik3n) in V, 0.0002 exp(2ik1n) in W, k3520.25, k150.15. ~a!
Fundamental.~b! Second harmonic.
g
f
each other as they propagate alongz. This walkoff will
counteract the efficiency of the down-conversion and w
eventually delocalize the beams. However, in Fig. 7 the i
tial stage of the down-conversion is clearly seen. Compl
depletion of thek3 component inV is nearly obtained atz
'25. At this point there is a mixture between an interferen

-
FIG. 7. Down-conversion with beams. Boundary conditions a

open ends. Parameters area522.9, h50.5. Input: f (n)exp
(2ik3n) in V, 0.0002f (n)exp(2ik2n) in W, k3520.25, k2

520.4, and f (n)5sech(n2n0/2). ~a! Fundamental.~b! Second
harmonic.
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PRE 60 6109THREE-WAVE INTERACTION IN TWO-COMPONENT . . .
pattern fromk1 andk2 in uWu and walkoff. Withz.25, the
walkoff effects set in and thek1 and k2 components inW
walk away from each other with their respective velocitie

Although the beams in Fig. 7 remain localized, they a
not stationary, since down-conversion is taking place. T
stable solution given in Eq.~9! is based on a beam configu
ration where the three modes in the beams are stationar
that configuration a stable balance exist in the intricate in
play between walkoff, harmonic energy exchange, and n
linear phase changes. In Fig. 8 we show the stable prop
tion of such an excitation. The wave numbers arek1
520.5 and k250.2, yielding v150.96, v2520.40, and
v350.59. The value ofv was chosen to be 0.8 in the initia
condition, which is reproduced by the simulation. The sm

FIG. 8. Stable propagation of localized excitation. Bounda
conditions are periodic. Parameters areh51.0, a521.8. Plane
waves:k1520.5, k250.2. The velocity of the excitation is mea
sured to be20.79. ~a! Fundamental.~b! Second harmonic.
um

p.
e
e

In
r-
n-
a-

ll

wiggles generated on top ofuVu as the beam propagate
alongz are caused by the formation of the higher order m
ing termsB1 andB2 . However, the excitation remains con
nected and propagates in a stable manner. SinceA2 in solu-
tion ~9! has an infinite extension, we had to impose perio
boundary conditions in the simulations. Furthermore, n
merical simulations confirm that the solution indicated in E
~10! is unstable. It is clear from the decay instability in Fi
6 that solution~10!, which has a constant background inA3 ,
will also be modulationally unstable.

IV. CONCLUSIONS

In summary, we have shown that both efficient two-wa
and three-wave interaction takes place in a lattice with q
dratic nonlinearity when the interacting waves are tilted to
proper angle with respect to each other.

In the degenerate case with only two interacting wav
we focused on energy conversion from the fundamenta
the second harmonic and detected the bandwidth of this
cess in terms of the sensitivity to the phase tilt~transverse
wavenumber! of the incoming fundamental.

With three interacting waves the dynamics are potentia
richer. We showed the existence of decay instability in
lattice that couples energy fromk3 to k1 and k2 and stable
propagation of a localized excitation. It is worth noting th
the three-wave components have different transverse w
numbers and therefore different propagation angles in
space. Thus, when energy is transferred from, say,k2 to k1 as
in Fig. 7, the direction of light will have changed at th
output of the waveguides according to the phase tiltk1
2k2 . The direction of propagation is determined by t
anglef' k/Q, whereQ is the wave number of the relevan
carrier wave~see Fig. 1!. Assuming the wavelength of th
fundamental to bel;1.5mm and the waveguide separatio
to be;10mm, one finds that the change in angle is;0.75°
for the simulation shown in Fig. 7. The change in angle w
be accompanied by a change in wavelength according toq,
which depends on the scaling ofz and thus on the actua
nearest neighbor coupling strength between the wavegui

The results show the general nature of parametric w
interaction that may come into view in any lattice exhibitin
a quadratic nonlinearity.
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